ISSN 1600-5368

Xiao-Ling Wang

Department of Chemistry, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail: xlwangwang@163.com

Key indicators

Single-crystal X-ray study T = 288 KMean σ (C–C) = 0.003 Å R factor = 0.038 wR factor = 0.086 Data-to-parameter ratio = 9.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrahydroepiberberine

The title compound [systematic name: 6,6a,11,12-tetrahydro-8,9-dimethoxy-14*H*-dioxolo[4',5':7,8]isoquinolino[3,2-*a*]isoquinoline], also known as sinactine, C₂₀H₂₁NO₄, a protoberberine-type alkaloid, was isolated from the roots of the plant *Sinomenium acutum*. Both piperidine rings adopt halfchair conformations.

Comment

Sinomenium acutum is distributed mainly in hilly regions of southwest, northwest and southeast China. The roots and stems of the plant are used as a folk medicine to cure rheumatism, dropsy and dermatophytosis. A number of alkaloids with different skeletons have been isolated from the plant (Jiangsu New Medical College, 1985; Chen *et al.*, 1991; Moriyasu *et al.*, 1993, 1994). In the course of a systematic search for bioactive substances from traditional Chinese herbal medicines, we have studied the roots of *S. acutum* and obtained several compounds, including the title compound, (I). Compound (I) has been isolated from several plant species (Dewan *et al.*, 1983). Previously, we have reported the crystal structures of cheilanthifoline (Wang *et al.*, 2006) and 8-oxotetrahydropalmatine (Wang, 2006). We report here the crystal structure of (I).

The 1,3-benzodioxole ring system is essentially planar (Fig. 1). Both piperidine rings adopt half-chair conformations. The methoxy group attached at atom C3 is coplanar with the C1–C4/C4A/C14 benzene ring, but that at atom C2 is twisted away from the ring, with a C17–O4–C2–C1 torsion angle of -17.5 (4)°.

 $C-H\cdots O$ and $C-H\cdots \pi$ hydrogen-bonding interactions are observed in the crystal structure (Table 1).

Experimental

Sinomenine is produced from the powder of the roots of *S. acutum* by the Baoji Yongjia Plant Medicine Extracting Company Limited, Baoji, People's Republic of China. It was obtained from the benzene extract of the powder in a vacuum (Chen *et al.*, 1995). The remaining

Acta Cryst. (2006). E62, o1271-o1272

All rights reserved

© 2006 International Union of Crystallography

Received 27 February 2006 Accepted 1 March 2006

Figure 1

The structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

benzene mother liquor (3 kg), after the extraction of sinomenine, was obtained from the company. It was subjected to repeated chromatography on a silica-gel column, and eluted with petroleum ether/acetone (from 10:1 to 3:1) to afford compound (I) (0.01 g). Single crystals of (I) were obtained after repeated recrystallization from acetone.

Crystal data

C₂₀H₂₁NO₄ $M_r = 339.38$ Orthorhombic, $P2_12_12_1$ a = 7.367 (1) Å b = 8.377 (2) Å c = 27.676 (5) Å V = 1708.0 (6) Å³ Z = 4 $D_x = 1.320$ Mg m⁻³

Data collection

Siemens P4 diffractometer ω scans Absorption correction: none 2472 measured reflections 2277 independent reflections 1530 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.012$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.086$ S = 0.952277 reflections 229 parameters H-atom parameters constrained Mo $K\alpha$ radiation Cell parameters from 32 reflections $\theta = 2.5-16.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 288 (2) K Block, colourless $0.58 \times 0.46 \times 0.38 \text{ mm}$

 $\begin{array}{l} \theta_{\max} = 27.5^{\circ} \\ h = 0 \rightarrow 9 \\ k = 0 \rightarrow 10 \\ l = -1 \rightarrow 35 \\ 3 \text{ standard reflections} \\ \text{every 97 reflections} \\ \text{intensity decay: } 1.6\% \end{array}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0426P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.13 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0166 (16)

Table 1	
Hydrogen-bond geom	etry (Å, °).

	$\cdot \cdot A$
$D = \Pi \cdots \Lambda$ $D = \Pi$ $\Pi \cdots \Lambda$ $D = \Pi \cdot$	
$C5-H5B\cdots O3^{i}$ 0.97 2.58 3.504 (3) 160	
$C17 - H17C \cdots O2^{ii}$ 0.96 2.59 3.527 (4) 166	
$C16-H16C\cdots Cg1^{i}$ 0.96 2.65 3.489 (3) 146	
$C6-H6B\cdots Cg2^{iii}$ 0.97 2.81 3.697 (3) 153	

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$. *Cg1* and *Cg2* denote the centroids of the C1–C4/C4A/C14 and C9–C12/C12A/C8A rings, respectively.

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.98 Å. The $U_{\rm iso}({\rm H})$ values were constrained to be $1.5U_{\rm eq}$ of the carrier atom for methyl H atoms and $1.2U_{\rm eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997*b*); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Phytochemistry Key Laboratory of Shaanxi Province for research grant (No. 05js43). The authors also thank Professor Kai-Bei Yu, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, for the diffraction measurements.

References

- Chen, C., Sun, L. J. & Xu, H. Q. (1995). Chinese Patent No. 1 125 724.
- Chen, Y. Y., Qiu, C. C. & Shen, L. (1991). *Beijing Yike Daxue Xuebao*, **23**, 235–237. (In Chinese.)
- Dewan, S. B., Sudha, J. & Sandeep, G. (1983). Tetrahedron, **39**, 455–459.
- Jiangsu New Medical College (1985). *The Dictionary of Chinese Medicine*, pp. 1234–1236. Shanghai: Shanghai Science and Technology Press.
- Moriyasu, M., Ichimaru, M. & Nishiyama, Y. (1993). *Bunseki Kagaku*, **42**, 659–665. (In Japanese.)
- Moriyasu, M., Ichimaru, M. & Nishiyama, Y. (1994). Nat. Med. 48, 287-290.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, X.-L. (2006). Acta Cryst. E62, 0498-0499.
- Wang, X.-L., Li, Z.-X. & Qin, G.-W. (2006). Acta Cryst. E62, 081-082.